Exam Calculus 2

10 April 2017, 14:00-17:00

The exam consists of 6 problems. You have 180 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. $[4+8+3=15$ Points $]$ Let the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as

$$
(x, y) \mapsto\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) Show that f is not continuous at $(x, y)=(0,0)$. (Hint: consider f along the curve parametrized as $(x(t), y(t))=\left(t, t^{2}\right)$.)
(b) Show that the directional derivatives of f exists in all directions $\boldsymbol{u}=(v, w) \in \mathbb{R}^{2}$, $v^{2}+w^{2}=1$. Note that you will have to distinguish between the two cases $w=0$ and $w \neq 0$.
(c) Is f differentiable at $(x, y)=(0,0)$? Justify your answer.
2. $\left[6+4+5=\mathbf{1 5}\right.$ Points] Consider the curve C parametrized by $\mathbf{r}:[0,1] \rightarrow \mathbb{R}^{3}$ with

$$
\mathbf{r}(t)=t \mathbf{i}+\frac{1}{3}(1+t)^{3 / 2} \mathbf{j}+\frac{1}{3}(1-t)^{3 / 2} \mathbf{k}
$$

(a) Determine the parametrization of C by arclength s.
(b) At each point on the curve C, determine the curvature κ of C.
(c) Show that the derivative of the unit tangent vector \mathbf{T} with respect to arclength s is perpendicular to \mathbf{T}. Let \mathbf{N} denote the corresponding normalized unit vector obtained from this derivative. Show that $\frac{\mathrm{d}}{\mathrm{d} s} \mathbf{T}=\kappa \mathbf{N}$.
3. $\left[7+8=\mathbf{1 5}\right.$ Points] Let S be the surface in \mathbb{R}^{3} defined by $x^{2}+y^{2}+z^{2}=3$.
(a) Show that the tangent plane of S at the point $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies the equation $x_{0} x+y_{0} y+z_{0} z=3$.
(b) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined as $f(x, y, z)=x+y-z$. Determine the maxima and minima of f on S.
4. $[5+3+5+\mathbf{2}=\mathbf{1 5}$ Points $]$ For the constant $a \in \mathbb{R}$, consider the vector field \mathbf{F} on \mathbb{R}^{3} given by

$$
\mathbf{F}(x, y, z)=\left(a x y-z^{3}\right) \mathbf{i}+(a-2) x^{2} \mathbf{j}+(1-a) x z^{2} \mathbf{k}
$$

(a) Let $A=(0,0,0)$ and $B=(1,1,1)$, and C be the straight line segment connecting A to B. Compute the line integral of \mathbf{F} along C, i.e.

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{s}
$$

(b) Determine a in such a way that the vector field \mathbf{F} is conservative.
(c) Determine for the value of a found in part (b) a potential function of \mathbf{F}.
(d) Show that the potential function in part (c) can be used to compute the value of the line integral in part (a) in the case where \mathbf{F} is conservative by using the Fundamental Theorem of Line Integrals.
5. $[10+5=15$ Points $]$
(a) Let S be the paraboloid $z=9-x^{2}-y^{2}$ defined over the disk of radius 3 in the (x, y)-plane (i.e. the points on S have $z \geq 0$) and suppose that S is oriented by the upward pointing normal. Let \mathbf{G} be the vector field on \mathbb{R}^{3} defined by $\mathbf{G}=\nabla \times \mathbf{F}$ where

$$
\mathbf{F}(x, y, z)=(2 z-y) \mathbf{i}+(x+z) \mathbf{j}+(3 x-2 y) \mathbf{k}
$$

Compute the flux of G through S by using Stokes' Theorem.
(b) Show that Stokes' Theorem implies Green's Theorem.
6. $[\mathbf{1 2 + 3}=\mathbf{1 5}$ Points $]$ Let the vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as

$$
\mathbf{F}(x, y, z)=\frac{1}{3}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) .
$$

(a) Let B_{a} be the three-dimensional ball of radius $a>0$ centred at the origin, i.e. $B_{a}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq a^{2}\right\}$. Verify Gauss' Divergence Theorem for the flux of \mathbf{F} through the boundary of B_{a}.
(b) Show that the flux of \mathbf{F} through the boundary of any solid region D in \mathbb{R}^{3} equals the volume of D.

Solutions

1. (a) For $t \neq 0$, we have

$$
f(x(t), y(t))=\frac{x^{2}(t) y(t)}{x^{4}(t)+y^{2}(t)}=\frac{t^{2} \cdot t^{2}}{t^{4}+t^{4}}=\frac{1}{2 t^{2}} .
$$

By definition $f(0,0)=0$. As any neighbourhood U of $(0,0)$ includes points $(x, y) \in U$ with $(x, y) \neq(0,0)$ and $y=x^{2}$ for which $f(x, y)=1 / 2$, the function f cannot be continuous at $(x, y)=(0,0)$.
(b) By definition the directional derivative of f in the direction of $\boldsymbol{u}=(v, w)$ is

$$
D_{\boldsymbol{u}} f(0,0)=\lim _{h \rightarrow 0} \frac{f(h v, h w)-f(0,0)}{h} .
$$

From the definition of f it follows that for $h \neq 0$,

$$
\frac{f(h v, h w)-f(0,0)}{h}=\frac{\frac{h^{2} v^{2} h w}{h^{4} v^{4}+h^{2} w^{2}}-0}{h}=\frac{\frac{h^{3} v^{2} w}{h^{4} v^{4}+h^{2} w^{2}}}{h}=\frac{h^{2} v^{2} w}{h^{4} v^{4}+h^{2} w^{2}}=\frac{v^{2} w}{h^{2} v^{4}+w^{2}} .
$$

which for $w \neq 0$ converges to $\frac{v^{2} w}{w^{2}}=\frac{v^{2}}{w}$ as $h \rightarrow 0$. For $w=0$ and $h \neq 0$, we have

$$
\frac{f(h v, h w)-f(0,0)}{h}=\frac{\frac{h^{2} v^{2} h w}{h^{4} v^{4}+h^{2} w^{2}}}{h}=0
$$

which also has a limit as $h \rightarrow 0$. The directional derivatives hence exist in all directions \boldsymbol{u}.
(c) The function f is not differentiable at $(x, y)=(0,0)$ as f is not continuous at $(0,0)$.
2. (a) The tangent vector associated with the parametrization is

$$
\mathbf{r}^{\prime}(t)=\mathbf{i}+\frac{1}{2}(1+t)^{1 / 2} \mathbf{j}-\frac{1}{2}(1-t)^{1 / 2} \mathbf{k}
$$

and has length

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=\left(1+\frac{1}{4}(1+t)+\frac{1}{4}(1-t)\right)^{1 / 2}=\left(1+\frac{1}{2}\right)^{1 / 2}=\left(\frac{3}{2}\right)^{1 / 2}
$$

Note that we here used that $1-t \geq 0$ for $t \in[0,1]$. For $t \in[0,1]$, the arc length is hence

$$
s(t)=\int_{0}^{t}\left\|\mathbf{r}^{\prime}(\tau)\right\| \mathrm{d} \tau=t\left(\frac{3}{2}\right)^{1 / 2}
$$

In particular $s(1)=(3 / 2)^{1 / 2}$. Inverting for t gives

$$
t(s)=s\left(\frac{2}{3}\right)^{1 / 2}
$$

with $s \in\left[0,(3 / 2)^{1 / 2}\right]$. The parametrization by arc length is hence given by
$\tilde{\mathbf{r}}(s)=\mathbf{r}(t(s))=s\left(\frac{2}{3}\right)^{1 / 2} \mathbf{i}+\frac{1}{3}\left(1+s\left(\frac{2}{3}\right)^{1 / 2}\right)^{3 / 2} \mathbf{j}+\frac{1}{3}\left(1-s\left(\frac{2}{3}\right)^{1 / 2}\right)^{3 / 2} \mathbf{k}$.
(b) The unit tangent vector at $\mathbf{r}(t)$ is given by

$$
\mathbf{T}=\frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|} \mathbf{r}^{\prime}(t)=\left(\frac{2}{3}\right)^{1 / 2}\left(\mathbf{i}+\frac{1}{2}(1+t)^{1 / 2} \mathbf{j}-\frac{1}{2}(1-t)^{1 / 2} \mathbf{k}\right)
$$

The curvature κ at $\mathbf{r}(t)$ is given by

$$
\begin{aligned}
\kappa & =\frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|}\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} t}\right\| \\
& =\left(\frac{2}{3}\right)^{1 / 2}\left\|\left(\frac{2}{3}\right)^{1 / 2}\left(\frac{1}{4}(1+t)^{-1 / 2} \mathbf{j}+\frac{1}{4}(1-t)^{-1 / 2} \mathbf{k}\right)\right\| \\
& =\frac{2}{3}\left\|\left(\frac{1}{4}(1+t)^{-1 / 2} \mathbf{j}+\frac{1}{4}(1-t)^{-1 / 2} \mathbf{k}\right)\right\| \\
& =\frac{2}{3} \frac{1}{4}\left(\frac{1}{1+t}+\frac{1}{1-t}\right)^{1 / 2} \\
& =\frac{1}{6}\left(\frac{2}{1-t^{2}}\right)^{1 / 2}
\end{aligned}
$$

(c) As \mathbf{T} has unit length it satisfies $\mathbf{T} \cdot \mathbf{T}=1$. Differentiating both sides of this equality with respect to t gives

$$
\mathbf{T}^{\prime}(t) \cdot \mathbf{T}(t)+\mathbf{T}(t) \cdot \mathbf{T}^{\prime}(t)=2 \mathbf{T}^{\prime}(t) \cdot \mathbf{T}(t)=0
$$

where we used the differentiation rule for the scalar product and the symmetry of the scalar product. So $\mathbf{T}^{\prime}(t)$ is perpendicular to $\mathbf{T}(t)$. Let \mathbf{N} be the unit vector in direction of $\mathbf{T}^{\prime}(t)$. Then By definition

$$
\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}=\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}\right\| \frac{\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}}{\left\|\frac{\mathrm{dT} \mathbf{T}}{\mathrm{~d} s}\right\|}=\kappa \mathbf{N} .
$$

3. (a) Let $g(x, y, z)=x^{2}+y^{2}+z^{2}-3$. The gradient of f in $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is then perpendicular to the tangent plane V of S at this point. The points on V thus statisfy

$$
0=\nabla g(\mathbf{a}) \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=2 x_{0}\left(x-x_{0}\right)+2 y_{0}\left(y-y_{0}\right)+2 z_{0}\left(z-z_{0}\right) .
$$

The equation $x x_{0}+y y_{0}+z z_{0}=3$ follows from $x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=3$.
(b) By the method of Lagrange multipliers there exists for a critical point \mathbf{r} of f restricted to S a scalar $\lambda \in \mathbb{R} \mathbf{r}$ such that

$$
\begin{cases}\nabla f(\mathbf{r}) & =\lambda \nabla g(\mathbf{r}) \\ g(\mathbf{r}) & =0\end{cases}
$$

or equivalently

$$
\begin{cases}1 & =2 \lambda x \\ 1 & =2 \lambda y \\ -1 & =2 \lambda z \\ 3 & =x^{2}+y^{2}+z^{2}\end{cases}
$$

These equations cannot be satisfied for $\lambda=0$. We can hence assume $\lambda \neq 0$. Dividing the first three equations by λ shows $x=y=-z$. From the fourth equation it then follows that $x^{2}=y^{2}+z^{2}=1$, i.e. $x=y=-z= \pm 1$.
As S is compact it follows from Weierstraß' Theorem that f attains its maxima and minima on S. As $f(1,1,-1)=3$ and $f(-1,-1,1)=-3$ it follows that f restricted S has a maximum at $(x, y, z)=(1,1,-1)$ and a minimum at $(x, y, z)=$ $(-1,-1,1)$.
4. (a) The line segment C from A to B has the parametrization $\mathbf{r}(t)=(t, t, t)$ with $t \in[0,1]$. The line integral is then given by

$$
\begin{aligned}
\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t & =\int_{0}^{1}\left(\left(a t^{2}-t^{3}\right) \mathbf{i}+(a-2) t^{2} \mathbf{j}+(1-a) t^{3} \mathbf{k}\right) \cdot(\mathbf{i}+\mathbf{j}+\mathbf{k}) \mathrm{d} t \\
& =\int_{0}^{1}\left(a t^{2}-t^{3}+(a-2) t^{2}+(1-a) t^{3}\right) \mathrm{d} t \\
& =\int_{0}^{1}\left((2 a-2) t^{2}-a t^{3}\right) \mathrm{d} t \\
& =\left[\frac{2 a-2}{3} t^{3}-\frac{a}{4} t^{4}\right]_{t=0}^{t=1} \\
& =\frac{2 a-2}{3}-\frac{a}{4} .
\end{aligned}
$$

(b) For \mathbf{F} to be conservative the curl of \mathbf{F} has to vanish. We have

$$
\begin{aligned}
\nabla \times \mathbf{F}(x, y, z)= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
a x y-z^{3} & (a-2) x^{2} & (1-a) x z^{2}
\end{array}\right| \\
= & \left(\partial_{y}(1-a) x z^{2}-\partial_{z}(a-2) x^{2}\right) \mathbf{i}+ \\
& \left(\partial_{z}\left(a x y-z^{3}\right)-\partial_{x}(1-a) x z^{2}\right) \mathbf{j}+ \\
& \left(\partial_{x}(a-2) x^{2}-\partial_{y}\left(a x y-z^{3}\right)\right) \mathbf{k} \\
= & 0 \mathbf{i}+\left(-3 z^{2}-(1-a) z^{2}\right) \mathbf{j}+(2(a-2) x-a x) \mathbf{k} .
\end{aligned}
$$

Equating this to zero gives $a=4$.
(c) Let f denote the potential function. Then f satisfies the equations

$$
\begin{align*}
f_{x} & =4 x y-z^{3}, \tag{1}\\
f_{y} & =2 x^{2}, \tag{2}\\
f_{z} & =-3 x z^{2} . \tag{3}
\end{align*}
$$

Integrating Eq. (1) with respect to x gives

$$
f(x, y, z)=2 x^{2} y-x z^{3}+g(y, z),
$$

where $g(y, z)$ is a integration constant which can dependent on y and z. Differentiating with respect to y and using Eq. (2) yields

$$
2 x^{2}+g_{y}(y, z)=2 x^{2}
$$

i.e., $g_{y}(y, z)=0$. So g does not dependent on y and is hence of the form $g(y, z)=h(z)$ for some function $h: \mathbb{R} \rightarrow \mathbb{R}$. So $f(x, y, z)=2 x^{2} y-x z^{3}+h(z)$. Differentiating with respect to z and using Eq. (3) yields

$$
-3 x z^{2}+h^{\prime}(z)=-3 x z^{2}
$$

which gives $h^{\prime}(z)=0$, i.e. h is constant. So the potential function is

$$
f(x, y, z)=2 x^{2} y-x z^{3}+c
$$

with $c \in \mathbb{R}$.
(d) According to the Fundamental Theorem for Line Integrals the line integral is given by $f(B)-f(A)=f(1,1,1)-f(0,0,0)=(2-1)-0=1$, where f is the potential function computed in part (c). This agrees with the result found in part (a) for $a=4$.
5. (a) By Stokes' Theorem the flux of \mathbf{G} through S is

$$
\begin{equation*}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{s} \tag{4}
\end{equation*}
$$

The surface S is the part of a downward open paraboloid having $z \geq 0$. Its boundary ∂S is given the circle $x^{2}+y^{2}=3, z=0$. This circle has the parametrization

$$
\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+0 \mathbf{k}
$$

with $t \in[0,2 \pi]$. As S is oriented by the upward normal the parametrization \mathbf{r} gives an orientation of ∂S which is consistent with that of S. The right hand side of Eq. (4) is

$$
\begin{aligned}
\int_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{s} & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t \\
& =\int_{0}^{2 \pi}(-3 \sin t \mathbf{i}+3 \cos t \mathbf{j}+(9 \cos t-3 \sin t) \mathbf{k}) \cdot(-3 \sin t \mathbf{i}+3 \cos t \mathbf{j}+0 \mathbf{k}) \mathrm{d} t \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(9 \sin ^{2} t+9 \cos ^{2} t\right) \mathrm{d} t \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} 9 \mathrm{~d} t \\
& =18 \pi
\end{aligned}
$$

(b) Consider a surface S contained in the (x, y)-plane oriented by the normal vector \mathbf{k} with boundary ∂S. Consider a vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form $\mathbf{F}(x, y, z)=$ $P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$. The curl of such a vector field is

$$
\begin{aligned}
\nabla \times \mathbf{F}(x, y, z)= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
P(x, y) & Q(x, y) & 0
\end{array}\right| \\
= & \left(\partial_{y} 0-\partial_{z} P(x, y)\right) \mathbf{i}+ \\
& \left(\partial_{z} Q(x, y)-\partial_{x} 0\right) \mathbf{j}+ \\
& \left(\partial_{x} Q(x, y)-\partial_{y} P(x, y)\right) \mathbf{k} \\
= & 0 \mathbf{i}+0 \mathbf{j}+\left(Q_{x}(x, y)-P_{y}(x, y)\right) \mathbf{k} .
\end{aligned}
$$

The left hand side of the equality in Stokes' Theorem (4) is hence
$\iint_{S} \nabla \times \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\iint_{S}\left(Q_{x}(x, y)-P_{y}(x, y)\right) \mathbf{k} \cdot \mathbf{k} \mathrm{d} S=\iint_{S}\left(Q_{x}(x, y)-P_{y}(x, y)\right) \mathrm{d} A$.
Let $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, t \in[a, b]$ be a parametrization of ∂S where the orientation following from the tangent vector $\mathbf{r}^{\prime}(t)$ is consistent with the orientation of ∂S induced by the orientation of S. This means that if we traverse ∂S by increasing t the surface S will be on our left. Due to the special form of the vector field \mathbf{F} the right hand side of the equality in Stokes' Theorem (4) reduces to

$$
\begin{align*}
\int_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{s} & =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t \\
& =\int_{a}^{b}(P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}) \cdot(x(t) \mathbf{i}+y(t) \mathbf{j}) \mathrm{d} t \tag{6}\\
& =\int_{a}^{b}\left(P(x, y) x^{\prime}(t)+Q(x, y) y^{\prime}(t)\right) \mathrm{d} t \\
& =\int_{\partial S} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y .
\end{align*}
$$

Equating the right hand sides of (5) and (6) gives the equality stated in Green's Theorem.
6. (a) Gauss' Divergence Theorem states that for a solid region D in \mathbb{R}^{3} the flux of a vector field \mathbf{F} in \mathbb{R}^{3} through the boundary ∂D of D equals the volume integral of the divergence of \mathbf{F} over D, i.e.

$$
\iint_{\partial D} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iiint_{D} \mathrm{~d} V .
$$

The boundary of the ball B_{a} is the sphere S_{a} of radius a. An outward pointing unit normal vector of S_{a} at the point (x, y, z) is given by

$$
\mathbf{n}(x, y, z)=\frac{1}{a}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) .
$$

The flux integral is

$$
\begin{aligned}
\iint_{S_{a}} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S & =\frac{1}{a} \iint_{S_{a}} \frac{1}{3}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot \frac{1}{a}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \mathrm{d} S \\
& =\frac{1}{3 a} \iint_{S_{a}}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} S \\
& =\frac{1}{3 a} \iint_{S_{a}} a^{2} \mathrm{~d} S \\
& =\frac{4 \pi}{3} a^{3}
\end{aligned}
$$

where we used that the surface area of a sphere of radius a is $4 \pi a^{2}$.
(b) The divergence of \mathbf{F} at (x, y, z) is

$$
\nabla \cdot \mathbf{F}(x, y, z)=\frac{1}{3}\left(\partial_{x} x+\partial_{y} y+\partial_{z} z\right)=1 .
$$

The integration of $\nabla \cdot \mathbf{F}$ over the ball of radius a gives the volume of the ball of radius a which again is $4 \pi a^{3} / 3$.
(c) As the divergence of \mathbf{F} is the function constant 1 the flux through the boundary ∂D of any solid region D in \mathbb{R}^{3} is by Gauss' Divergence Theorem equal to the volume of the region D.

